Ir al contenido

Documat


Exceptional points in the elliptic-hyperelliptic locus

  • Autores: Ewa Tyszkowska, Anthony Weaver
  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 212, Nº 6, 2008, págs. 1415-1426
  • Idioma: inglés
  • DOI: 10.1016/j.jpaa.2007.09.013
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • An exceptional point in the moduli space of compact Riemann surfaces is a unique surface class whose full automorphism group acts with a triangular signature. A surface admitting a conformal involution with quotient an elliptic curve is called elliptic�hyperelliptic; one admitting an anticonformal involution is called symmetric. In this paper, we determine, up to topological conjugacy, the full group of conformal and anticonformal automorphisms of a symmetric exceptional point in the elliptic�hyperelliptic locus. We determine the number of ovals of any symmetry of such a surface. We show that while the elliptic�hyperelliptic locus can contain an arbitrarily large number of exceptional points, no more than four are symmetric.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno