Ir al contenido

Documat


Geometric collections and Castelnuovo-Mumford regularity

  • Autores: Laura Costa Farràs Árbol académico, Rosa María Miró-Roig Árbol académico
  • Localización: Mathematical proceedings of the Cambridge Philosophical Society, ISSN 0305-0041, Vol. 143, Nº 3, 2007, págs. 557-578
  • Idioma: inglés
  • DOI: 10.1017/s0305004107000503
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The paper begins by overviewing the basic facts on geometric exceptional collections. Then we derive, for any coherent sheaf on a smooth projective variety with a geometric collection, two spectral sequences: the first one abuts to and the second one to its cohomology. The main goal of the paper is to generalize Castelnuovo-Mumford regularity for coherent sheaves on projective spaces to coherent sheaves on smooth projective varieties X with a geometric collection s. We define the notion of regularity of a coherent sheaf on X with respect to s. We show that the basic formal properties of the Castelnuovo-Mumford regularity of coherent sheaves over projective spaces continue to hold in this new setting and we show that in case of coherent sheaves on and for a suitable geometric collection of coherent sheaves on both notions of regularity coincide. Finally, we carefully study the regularity of coherent sheaves on a smooth quadric hypersurface (n odd) with respect to a suitable geometric collection and we compare it with the Castelnuovo-Mumford regularity of their extension by zero in .


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno