Ir al contenido

Documat


CD-independent subsets in distributive lattices

  • Autores: Gábor Czédli, Miklós Hartmann, E. Tamás Schmidt
  • Localización: Publicationes Mathematicae Debrecen, ISSN 0033-3883, Tomus 74, Fasc. 1-2, 2009, págs. 127-134
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A subset X of a lattice L with 0 is called CD-independent if for any x; y 2 X, either x · y or y · x or x^y = 0. In other words, if any two elements of X are either comparable or \disjoint". Maximal CD-independent subsets are called CD-bases. The main result says that any two CD-bases of a ¯nite distributive lattice L have the same number of elements. It is also shown that distributivity cannot be replaced by a weaker lattice identity. However, weaker assumptions on L are still relevant:

      semimodularity implies that no CD-basis can have fewer elements than a maximal chain, while lower semimodularity yields that each maximal chain together with all atoms forms a CD-basis.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno