Ir al contenido

Documat


Geometric invariant theory via Cox rings

  • Autores: Ivan V. Arzhantsev, Jürgen Hausen
  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 213, Nº 1, 2009, págs. 154-172
  • Idioma: inglés
  • DOI: 10.1016/j.jpaa.2008.06.005
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider actions of reductive groups on a variety with finitely generated Cox ring, e.g., the classical case of a diagonal action on a product of projective spaces. Given such an action, we construct via combinatorial data in the Cox ring all maximal open subsets such that the quotient is quasiprojective or embeddable into a toric variety. As applications, we obtain an explicit description of the chamber structure of the linearized ample cone and several Gelfand�MacPherson type correspondences relating quotients by reductive groups to quotients by torus actions. Moreover, our approach provides a general access to the geometry of many of the resulting quotient spaces.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno