Ir al contenido

Documat


Covariant representations of Hecke algebras and imprimitivity for crossed products by homogeneous spaces

  • Autores: Astrid An Huef, S. Kaliszewski, Iain Raeburn
  • Localización: Journal of pure and applied algebra, ISSN 0022-4049, Vol. 212, Nº 10, 2008, págs. 2344-2357
  • Idioma: inglés
  • DOI: 10.1016/j.jpaa.2008.03.011
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For discrete Hecke pairs (G,H), we introduce a notion of covariant representation which reduces in the case where H is normal to the usual definition of covariance for the action of G/H on c0(G/H) by right translation; in many cases where G is a semidirect product, it can also be expressed in terms of covariance for a semigroup action. We use this covariance to characterise the representations of c0(G/H) which are multiples of the multiplication representation on l2(G/H), and more generally, we prove an imprimitivity theorem for regular representations of certain crossed products by coactions of homogeneous spaces. We thus obtain new criteria for extending unitary representations from H to G.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno