This note is a case study for the potential of liaison-theoretic methods to applications in Combinatorics. One of the main open questions in liaison theory is whether every homogeneous Cohen�Macaulay ideal in a polynomial ring is glicci, i.e. if it is in the G-liaison class of a complete intersection. We give an affirmative answer to this question for Stanley�Reisner ideals defined by simplicial complexes that are weakly vertex-decomposable. This class of complexes includes matroid, shifted and Gorenstein complexes respectively. Moreover, we construct a simplicial complex which shows that the property of being glicci depends on the characteristic of the base field. As an application of our methods we establish new evidence for two conjectures of Stanley on partitionable complexes and Stanley decompositions.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados