Ir al contenido

Documat


Mordell exceptional locus for subvarieties of the additive group

  • Autores: Dragos Ghioca
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 15, Nº 1, 2008, págs. 43-50
  • Idioma: inglés
  • DOI: 10.4310/mrl.2008.v15.n1.a4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We define the Mordell exceptional locus $Z(V)$ for affine varieties $V\subset\bG_a^g$ with respect to the action of a product of Drinfeld modules on the coordinates of $\bG_a^g$. We show that $Z(V)$ is a closed subset of $V$. We also show that there are finitely many maximal algebraic $\phi$-modules whose translates lie in $V$. Our results are motivated by Denis-Mordell-Lang conjecture for Drinfeld modules.

      We define the Mordell exceptional locus $Z(V)$ for affine varieties $V\subset\bG_a^g$ with respect to the action of a product of Drinfeld modules on the coordinates of $\bG_a^g$. We show that $Z(V)$ is a closed subset of $V$. We also show that there are finitely many maximal algebraic $\phi$-modules whose translates lie in $V$. Our results are motivated by Denis-Mordell-Lang conjecture for Drinfeld modules.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno