Francisco J. Díaz Díaz , Eduardo Friedman
The product $\big(\p a_m\big)\cdot\big(\p b_m\big)$ of two regularized products is not in general equal to the regularized product $\p (a_m\cdot b_m)$. We consider the discrepancy $F$, defined by $$ \exp(F ):=\frac{\p (a_m\cdot b_m)}{\big(\p a_m\big)\cdot\big(\p b_m\big)}. $$ When the terms $a_m$ and $b_m$ depend on parameters, we show in certain cases that $F$ is a polynomial in these parameters
© 2008-2024 Fundación Dialnet · Todos los derechos reservados