In the approach to Gromov--Witten theory developed by Givental, genus-zero Gromov--Witten invariants of a manifold $X$ are encoded by a Lagrangian cone in a certain infinite-dimensional symplectic vector space. We give a construction of this cone, in the spirit of $S^1$-equivariant Floer theory, in terms of $S^1$-equivariant Gromov--Witten theory of $X \times \PP^1$. This gives a conceptual understanding of the ``dilaton shift'': a change-of-variables which plays an essential role in Givental's theory
© 2008-2024 Fundación Dialnet · Todos los derechos reservados