We show that on K\"ahler manifolds $M$ with $c_1(M)=0$ the Calabi flow converges to a constant scalar curvature metric if the initial Calabi energy is sufficiently small. We prove a similar result on manifolds with $c_1(M)<0$ if the K\"ahler class is close to the canonical class.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados