Ir al contenido

Documat


Two results on the weighted Poincar\'{e} inequality on complete K\"{a}hler manifolds

  • Autores: Ovidiu Munteanu
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 14, Nº 5, 2007, págs. 995-1008
  • Idioma: inglés
  • DOI: 10.4310/mrl.2007.v14.n6.a8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we consider complete noncompact K\"{a}hler manifolds $M^m$ that satisfy the weighted Poincar\'{e} inequality with a weight function $\rho (x)$ that has limit zero at infinity of $M$. We prove that if the Ricci curvature lower bound $Ric_M(x)\geq -4\rho (x)$ holds on $M$ then the manifold has one nonparabolic end and if the bisectional curvature is bounded from below by $BK_M(x)\geq -\frac{\rho (x)}{m^2}$ then the manifold has one end, thus it is connected at infinity. The two results that we prove are the K\"{a}hler version of Theorem 6.3 and Theorem 7.2 in \cite{L-W4} and improve some results in \cite{L-W}.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno