Ir al contenido

Documat


Simple Hopf algebras and deformations of finite groups

  • Autores: César Galindo, Sonia Natale
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 14, Nº 5, 2007, págs. 943-954
  • Idioma: inglés
  • DOI: 10.4310/mrl.2007.v14.n6.a4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that certain twisting deformations of a family of supersolvable groups are simple as Hopf algebras. These groups are direct products of two generalized dihedral groups. Examples of this construction arise in dimensions $60$ and $p^2q^2$, for prime numbers $p, q$ with $q \vert p-1$. We also show that certain twisting deformation of the symmetric group is simple as a Hopf algebra. On the other hand, we prove that every twisting deformation of a nilpotent group is semisolvable. We conclude that the notions of simplicity and (semi)solvability of a semisimple Hopf algebra are not determined by its tensor category of representations.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno