Given a crossing in a planar diagram of a link in the three-sphere, we show that the knot Floer homologies of the link and its two resolutions at that crossing are related by an exact triangle. As a consequence, we deduce that for any quasi-alternating link, the total rank of its knot Floer homology is equal to the determinant of the link.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados