Ir al contenido

Documat


The Order of Plurisubharmonicity on Pseudoconvex Domains with Lipschitz Boundaries

  • Autores: Phillip S. Harrington
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 15, Nº 2-3, 2008, págs. 485-490
  • Idioma: inglés
  • DOI: 10.4310/mrl.2008.v15.n3.a8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $\Omega\subset\subset\mathbb{C}^n$ be a bounded pseudoconvex domain with Lipschitz boundary. Diederich and Fornaess have shown that when the boundary of $\Omega$ is $C^2$, there exists a constant $0<\eta<1$ and a defining function $\rho$ for $\Omega$ such that $-(-\rho)^{\eta}$ is a plurisubharmonic function on $\Omega$. In this paper, we show that the result of Diederich and Fornaess still holds when the boundary is only Lipschitz.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno