Ir al contenido

Documat


Intermediate Jacobians and ${\sf {A}{D}{E}}$ Hitchin Systems

  • Autores: D.E. Diaconescu, R. Donagi, Tony Pantev
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 14, Nº 5, 2007, págs. 745-756
  • Idioma: inglés
  • DOI: 10.4310/mrl.2007.v14.n5.a3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $\Sigma$ be a smooth projective complex curve and $\mathfrak{g}$ a simple Lie algebra of type ${\sf ADE}$ with associated adjoint group $G$. For a fixed pair $(\Sigma, \mathfrak{g})$, we construct a family of quasi-projective Calabi-Yau threefolds parameterized by the base of the Hitchin integrable system associated to $(\Sigma,\mathfrak{g})$. Our main result establishes an isomorphism between the Calabi-Yau integrable system, whose fibers are the intermediate Jacobians of this family of Calabi-Yau threefolds, and the Hitchin system for $G$, whose fibers are Prym varieties of the corresponding spectral covers. This construction provides a geometric framework for Dijkgraaf-Vafa transitions of type ${\sf ADE}$. In particular, it predicts an interesting connection between adjoint ${\sf ADE}$ Hitchin systems and quantization of holomorphic branes on Calabi-Yau manifolds.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno