Ir al contenido

Documat


A family of covering properties

  • Autores: Matteo Viale
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 15, Nº 2-3, 2008, págs. 221-238
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In the first part of this paper I present the main results of my Ph.D. thesis: several proofs of the singular cardinal hypothesis $\SCH$ are presented assuming either a strongly compact cardinal or the proper forcing axiom $\PFA$. To this aim I introduce a family of covering properties which imply both $\SCH$ and the failure of various forms of square. In the second part of the paper I apply these covering properties and other similar techniques to investigate models of strongly compact cardinals or of strong forcing axioms like $\MM$ or $\PFA$. In particular I show that if $\MM$ holds and all limit cardinals are strong limit, then any inner model $W$ with the same cardinals has the same ordinals of cofinality at most $\aleph_1$.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno