Ir al contenido

Documat


Asymptotic vanishing conditions which force regularity in local rings of prime characteristic

  • Autores: Ian M. Aberbach, Jinjia Li
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 15, Nº 4, 2008, págs. 815-820
  • Idioma: inglés
  • DOI: 10.4310/mrl.2008.v15.n4.a17
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $(R,\m,k)$ be a local (Noetherian) ring of positive prime characteristic $p$ and dimension $d$. Let $G_\dt$ be a minimal resolution of the residue field $k$, and for each $i\ge 0$, let $\gothic t_i(R) = \lim_{e\to \8} {\length(H_i(F^e(G_\dt)))}/{p^{ed}}$. We show that if $\gothic t_i(R) = 0$ for some $i>0$, then $R$ is a regular local ring. Using the same method, we are also able to show that if $R$ is an excellent local domain and $\Tor_i^R(k,R^+) = 0$ for some $i>0$, then $R$ is regular (where $R^+$ is the absolute integral closure of $R$). Both of the two results were previously known only for $i = 1$ or $2$ via completely different methods.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno