Ir al contenido

Documat


Compactness of the complex Green operator

  • Autores: Andrew Raich, Emil J. Straube
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 15, Nº 4, 2008, págs. 761-778
  • Idioma: inglés
  • DOI: 10.4310/mrl.2008.v15.n4.a13
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $\Omega\subset\C^n$ be a bounded smooth pseudoconvex domain. We show that compactness of the complex Green operator $G_{q}$ on $(0,q)$-forms on $b\Omega$ implies compactness of the $\dbar$-Neumann operator $N_{q}$ on $\Omega$. We prove that if $1 \leq q \leq n-2$ and $b\Omega$ satisfies $(P_q)$ and $(P_{n-q-1})$, then $G_{q}$ is a compact operator (and so is $G_{n-1-q}$). Our method relies on a jump type formula to represent forms on the boundary, and we prove an auxiliary compactness result for an `annulus' between two pseudoconvex domains. Our results, combined with the known characterization of compactness in the $\overline{\partial}$-Neumann problem on locally convexifiable domains, yield the corresponding characterization of compactness of the complex Green operator(s) on these domains.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno