Ir al contenido

Documat


Generalized Cherednik-Macdonald identities

  • Autores: Jasper V. Stokman
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 15, Nº 4, 2008, págs. 745-760
  • Idioma: inglés
  • DOI: 10.4310/mrl.2008.v15.n4.a12
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We derive generalizations of the Cherednik-Macdonald constant term identities associated to root systems which depend, besides on the usual multiplicity function, symmetrically on two additional parameters $\omega_{\pm}$. They are natural analogues of the Cherednik-Macdonald constant term $q$-identities in which the deformation parameter $q=\exp(2\pi i\omega_+/\omega_-)$ is allowed to have modulus one. They unite the Cherednik-Macdonald constant term $q$-identities with closely related Jackson $\widetilde{q}$-integral identities due to Macdonald, where the deformation parameter $\widetilde{q}=\exp(-2\pi i\omega_-/\omega_+)$ is related to $q$ by modular inversion.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno