Ir al contenido

Documat


Fourier-stable subrings in the Chow rings of abelian varieties

  • Autores: Alexander Polishchuk
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 15, Nº 4, 2008, págs. 705-714
  • Idioma: inglés
  • DOI: 10.4310/mrl.2008.v15.n4.a9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study subrings in the Chow ring $\CH^*(A)_{\Q}$ of an abelian variety $A$, stable under the Fourier transform with respect to an arbitrary polarization. We prove that by taking Pontryagin products of classes of dimension $\le 1$ one gets such a subring. We also show how to construct finite-dimensional Fourier-stable subrings in $\CH^*(A)_{\Q}$. Another result concerns the relation between the Pontryagin product and the usual product on the $\CH^*(A)_{\Q}$. We prove that the operator of the usual product with a cycle is a differential operator with respect to the Pontryagin product and compute its order in terms of the Beauville's decomposition of $\CH^*(A)_{\Q}$.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno