Ir al contenido

Documat


Conformal equivalence between certain geometries in dimension $\mathbf 6$ and $\mathbf 7$

  • Autores: Richard Cleyton, Stefan Ivanov Árbol académico
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 15, Nº 4, 2008, págs. 631-640
  • Idioma: inglés
  • DOI: 10.4310/mrl.2008.v15.n4.a3
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For $G_2$-manifolds the Fern\'andez-Gray class $\mathcal X_1+\mathcal X_4$ is shown to consist of the union of the class $\mathcal X_4$ of $G_2$-manifolds locally conformal to parallel $G_2$-structures and that of conformal transformations of nearly parallel or weak holonomy $G_2$-manifolds of type $\mathcal X_1$. The analogous conclusion is obtained for Gray-Hervella class $\mathcal W_1+\mathcal W_4$ of real $6$-dimensional almost Hermitian manifolds: this sort of geometry consists of locally conformally K\"ahler manifolds of class $\mathcal W_4$ and conformal transformations of nearly K\"ahler manifolds in class $\mathcal W_1$. A corollary of this is that a compact $\SU(3)$-space in class $\mathcal W_1+\mathcal W_4$ or $G_2$-space of the kind $\mathcal X_1+\mathcal X_4$ has constant scalar curvature if only if it is either a standard sphere or a nearly parallel $G_2$ or nearly K\"ahler manifold, respectively. The properties of the Riemannian curvature of the spaces under consideration are also explored.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno