Ir al contenido

Documat


Characterization of left Artinian algebras through pseudo path algebras

  • Autores: Fang Li
  • Localización: Journal of the Australian Mathematical Society, ISSN 1446-7887, Vol. 83, Nº 3, 2007, págs. 385-416
  • Idioma: inglés
  • DOI: 10.1017/s144678870003799x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, using pseudo path algebras, we generalize Gabriel's Theorem on elementary algebras to left Artinian algebras over a field k when the quotient algebra can be lifted by a radical. Our particular interest is when the dimension of the quotient algebra determined by the nth Hochschild cohomology is less than 2 (for example, when k is finite or char k=0). Using generalized path algebras, a generalization of Gabriel's Theorem is given for finite dimensional algebras with 2-nilpotent radicals which is splitting over its radical. As a tool, the so-called pseudo path algebra is introduced as a new generalization of path algebras, whose quotient by ker is a generalized path algebra (see Fact 2.6).


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno