A pro-Lie group is a projective limit of finite dimensional Lie groups. It is proved that a surjective continuous group homomorphism between connected pro-Lie groups is open. In fact this remains true for almost connected pro-Lie groups where a topological group is called almost connected if the factor group modulo the identity component is compact. As consequences we get a Closed Graph Theorem and the validity of the Second Isomorphism Theorem for pro-Lie groups in the almost connected context.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados