Eitan Tadmor, Dongming Wei
We prove that the one-dimensional Euler�Poisson system driven by the Poisson forcing together with the usual $\gamma$-law pressure, $\gamma \geq 1$, admits global solutions for a large class of initial data. Thus, the Poisson forcing regularizes the generic finite-time breakdown in the 2x2 p-system. Global regularity is shown to depend on whether or not the initial configuration of the Riemann invariants and density crosses an intrinsic critical threshold.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados