Ir al contenido

Documat


Conditions implying the uniqueness of the weak *-topology on certain group algebras

  • Autores: Matthew Daws, Hungq Le Pham, Stuart A. White
  • Localización: Houston journal of mathematics, ISSN 0362-1588, Vol. 35, Nº 1, 2009, págs. 253-276
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We investigate possible preduals of the measure algebra M(G) of a locally compact group and the Fourier algebra A(G) of a separable compact group. Both of these algebras are canonically dual spaces and the canonical preduals make the multiplication separately weak*-continuous so that these algebras are dual Banach algebras. In this paper we find additional conditions under which the preduals C0(G) of M(G) and C*(G) of A(G) are uniquely determined. In both cases we consider a natural comultiplication and show that the canonical predual gives rise to the unique weak*-topology making both the multiplication separately weak*-continuous and the comultiplication weak*-continuous. In particular, dual cohomological properties of these algebras are well defined with this additional structure.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno