Ir al contenido

Documat


The Bergman kernel and projection on non-smooth worm domains

  • Autores: Steven G. Krantz, Marco M. Peloso Árbol académico
  • Localización: Houston journal of mathematics, ISSN 0362-1588, Vol. 34, Nº 3, 2008, págs. 873-950
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the Bergman kernel and projection on the worm domain of Diederich-Fornaess, as later modified by Christer Kiselman. We calculate the Bergman kernels explicitly for these domains, up to an error term that can be controlled. As a result, we can determine the Lp-mapping properties of the Bergman projections on these worm domains. We calculate the sharp range of p for which the Bergman projection is bounded on Lp. Along the way, we give a new proof of the failure of Condition R on these worms.

      Finally, we are able to show that the singularities of the Bergman kernel on the boundary are not contained in the boundary diagonal.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno