We discuss rational parameterizations of surfaces whose support functions are rational functions of the coordinates specifying the normal vector and of a given non-degenerate quadratic form. The class of these surfaces is closed under offsetting. It comprises surfaces with rational support functions and non-developable quadric surfaces, and it is a subset of the class of rational surfaces with rational offset surfaces. We show that a particular parameterization algorithm for del Pezzo surfaces can be used to construct rational parameterizations of these surfaces. If the quadratic form is diagonalized and has rational coefficients, then the resulting parameterizations are almost always described by rational functions with rational coefficients.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados