Ir al contenido

Documat


Distribution of rational maps with a preperiodic critical point

  • Autores: Romain Dujardin, Charles Favre Árbol académico
  • Localización: American journal of mathematics, ISSN 0002-9327, Vol. 130, Nº 4, 2008, págs. 979-1032
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $\{f_\lambda\}$ be a family of rational maps of a fixed degree, with a marked critical point $c(\lambda)$. Under a natural assumption, we first prove that the hypersurfaces of parameters for which $c(\lambda)$ is periodic converge as a sequence of positive closed $(1,1)$ currents to the bifurcation current attached to $c$ and defined by DeMarco. We then turn our attention to the parameter space of polynomials of a fixed degree $d$. By intersecting the $d-1$ currents attached to each critical point of a polynomial, Bassaneli and Berteloot obtained a positive measure $\mu_{\rm bif}$ of finite mass which is supported on the connectedness locus. They showed that its support is included in the closure of the set of parameters admitting $d-1$ neutral cycles. We show that the support of this measure is precisely the closure of the set of strictly critically finite polynomials (i.e., of Misiurewicz points).


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno