David F. Anderson
The zero-divisor graph of a commutative ring R has the set of nonzero zero-divisors of R as its set of vertices, and two distinct vertices x and y are adjacent if and only if xy = 0. Let A be a subring of a commutative ring B. In this paper, we study the relationship between the diameters (resp., girths) of the zero-divisor graphs of A and B.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados