Ir al contenido

Documat


Linearly rigid metric spaces and the embedding problem

  • Autores: Julien Melleray, F. V. Petrov, A. M. Vershik
  • Localización: Fundamenta mathematicae, ISSN 0016-2736, Vol. 199, Nº 2, 2008, págs. 177-194
  • Idioma: inglés
  • DOI: 10.4064/fm199-2-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider the problem of isometric embedding of metric spaces into Banach spaces, and introduce and study the remarkable class of so-called linearly rigid metric spaces: these are the spaces that admit a unique, up to isometry, linearly dense isometric embedding into a Banach space. The first nontrivial example of such a space was given by R. Holmes; he proved that the universal Urysohn space has this property. We give a criterion of linear rigidity of a metric space, which allows us to give a simple proof of the linear rigidity of the Urysohn space and some other metric spaces. Various properties of linearly rigid spaces and related spaces are considered.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno