Ir al contenido

Documat


Scattering for the non-radial 3D cubic nonlinear Schrödinger equation

  • Autores: Thomas Duyckaerts Árbol académico, Justin Holmer, Svetlana Roudenko
  • Localización: Mathematical research letters, ISSN 1073-2780, Vol. 15, Nº 5-6, 2008, págs. 1233-1250
  • Idioma: inglés
  • DOI: 10.4310/mrl.2008.v15.n6.a13
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Scattering of radial $H^1$ solutions to the 3D focusing cubic nonlinear Schr\"o\-din\-ger equation below a mass-energy threshold $M[u]E[u] < M[Q]E[Q]$ and satisfying an initial mass-gradient bound $\Vert u_0 \Vert_{L^2} \Vert \nabla u_0 \Vert_{L^2} < \Vert Q \Vert_{L^2} \Vert \nabla Q \Vert_{L^2}$, where $Q$ is the ground state, was established in Holmer-Roudenko \cite{HR2}. In this note, we extend the result in \cite{HR2} to non-radial $H^1$ data. For this, we prove a non-radial profile decomposition involving a spatial translation parameter. Then, in the spirit of Kenig-Merle \cite{KM06b}, we control via momentum conservation the rate of divergence of the spatial translation parameter and by a convexity argument based on a local virial identity deduce scattering. An application to the defocusing case is also mentioned.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno