Ir al contenido

Documat


Periodic continued fractions and hyperelliptic curves

  • Autores: M. P. Grosset, Alexander P. Veselov
  • Localización: Journal of the London Mathematical Society, ISSN 0024-6107, Vol. 77, Nº 3, 2008, págs. 593-606
  • Idioma: inglés
  • DOI: 10.1112/jlms/jdm125
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We investigate when an algebraic function of the form ()=(�B()+R())/A(), where R() is a polynomial of odd degree N=2g+1 with coefficients in , can be written as a periodic -fraction of the form for some fixed sequence i. We show that this problem has a natural answer given by the classical theory of hyperelliptic curves and their Jacobi varieties. We also consider pure periodic -fraction expansions corresponding to the special case when bN=b0.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno