Sean Sather-Wagstaff, Tirdad Sharif, Diana White
We show that an iteration of the procedure used to define the Gorenstein projective modules over a commutative ring R yields exactly the Gorenstein projective modules. Specifically, given an exact sequence of Gorenstein projective R-modules such that the complexes HomR(G, H) and HomR(H, G) are exact for each Gorenstein projective R-module H, the module Coker() is Gorenstein projective. The proof of this result hinges upon our analysis of Gorenstein subcategories of abelian categories.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados