Ir al contenido

Documat


Quasiisometries between negatively curved Hadamard manifolds

  • Autores: Xiangdong Xie
  • Localización: Journal of the London Mathematical Society, ISSN 0024-6107, Vol. 79, Nº 1, 2009, págs. 15-32
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let H1, H2 be the universal covers of two compact Riemannian manifolds (of dimension not equal to 4) with negative sectional curvature. Then every quasiisometry between them lies at a finite distance from a bilipschitz homeomorphism. As a consequence, every self-quasiconformal map of a Heisenberg group (equipped with the Carnot metric and viewed as the ideal boundary of complex hyperbolic space) of dimension at least 5 extends to a self-quasiconformal map of the complex hyperbolic space.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno