Ir al contenido

Documat


The derived category of quasi-coherent sheaves and axiomatic stable homotopy

  • Autores: Leovigildo Alonso Tarrío Árbol académico, Ana Jeremías López Árbol académico, Marta Pérez Rodríguez Árbol académico, María Jesús Vale Gonsalves Árbol académico
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 218, Nº 4, 2008, págs. 1224-1252
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2008.03.011
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove in this paper that for a quasi-compact and semi-separated (nonnecessarily noetherian) scheme X, the derived category of quasi-coherent sheaves over X, , is a stable homotopy category in the sense of Hovey, Palmieri and Strickland, answering a question posed by Strickland. Moreover we show that it is unital and algebraic. We also prove that for a noetherian semi-separated formal scheme , its derived category of sheaves of modules with quasi-coherent torsion homologies is a stable homotopy category. It is algebraic but if the formal scheme is not a usual scheme, it is not unital, therefore its abstract nature differs essentially from that of the derived category (which is equivalent to ) in the case of a usual scheme.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno