Ir al contenido

Documat


Metric cotype

  • Autores: Manor Mendel, Assaf Naor
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 168, Nº 1, 2008, págs. 247-298
  • Idioma: inglés
  • DOI: 10.4007/annals.2008.168.247
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We introduce the notion of cotype of a metric space, and prove that for Banach spaces it coincides with the classical notion of Rademacher cotype. This yields a concrete version of Ribe�s theorem, settling a long standing open problem in the nonlinear theory of Banach spaces. We apply our results to several problems in metric geometry. Namely, we use metric cotype in the study of uniform and coarse embeddings, settling in particular the problem of classifying when Lp coarsely or uniformly embeds into Lq. We also prove a nonlinear analog of the Maurey-Pisier theorem, and use it to answer a question posed by Arora, Lovász, Newman, Rabani, Rabinovich and Vempala, and to obtain quantitative bounds in a metric Ramsey theorem due to Matou�ek.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno