Ir al contenido

Documat


The strong Macdonald conjecture and Hodge theory on the loop Grassmannian

  • Autores: Ian Grojnowski, Constantin Teleman
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 168, Nº 1, 2008, págs. 175-220
  • Idioma: inglés
  • DOI: 10.4007/annals.2008.168.175
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove the strong Macdonald conjecture of Hanlon and Feigin for reductive groups G. In a geometric reformulation, we show that the Dolbeault cohomology Hq(X;Op) of the loop Grassmannian X is freely generated by de Rham's forms on the disk coupled to the indecomposables of H·(BG). Equating the two Euler characteristics gives an identity, independently known to Macdonald [M], which generalises Ramanujan's 1?1 sum. For simply laced root systems at level 1, we also find a "strong form" of Bailey's 4?4 sum. Failure of Hodge decomposition implies the singularity of X, and of the algebraic loop groups. Some of our results were announced in [T2].


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno