Ir al contenido

Documat


Distribution of Selmer groups of quadratic twists of a family of elliptic curves

  • Autores: Maosheng Xiong, Alexandru Zaharescu
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 219, Nº 2, 2008, págs. 523-553
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2008.05.005
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the distribution of the size of the Selmer groups arising from a 2-isogeny and its dual 2-isogeny for quadratic twists of elliptic curves with full 2-torsion points in . We show that one of these Selmer groups is almost always bounded, while the 2-rank of the other follows a Gaussian distribution. This provides us with a small Tate�Shafarevich group and a large Tate�Shafarevich group. When combined with a result obtained by Yu [G. Yu, On the quadratic twists of a family of elliptic curves, Mathematika 52 (1�2) (2005) 139�154 (2006)], this shows that the mean value of the 2-rank of the large Tate�Shafarevich group for square-free positive integers n less than X is , as X?8.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno