Ir al contenido

Documat


Asymptotics of Plancherel measures for the infinite-dimensional unitary group

  • Autores: Alexei Borodin, Jeffrey Kuan
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 219, Nº 3, 2008, págs. 894-931
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2008.06.012
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study a two-dimensional family of probability measures on infinite Gelfand�Tsetlin schemes induced by a distinguished family of extreme characters of the infinite-dimensional unitary group. These measures are unitary group analogs of the well-known Plancherel measures for symmetric groups.

      We show that any measure from our family defines a determinantal point process on Z+xZ, and we prove that in appropriate scaling limits, such processes converge to two different extensions of the discrete sine process as well as to the extended Airy and Pearcey processes.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno