Ir al contenido

Documat


Resumen de Generating sequences and Poincaré series for a finite set of plane divisorial valuations

Félix Delgado de la Mata Árbol académico, Carlos Galindo Pastor Árbol académico, Ana Núñez Jimenez Árbol académico

  • Let V be a finite set of divisorial valuations centered at a 2-dimensional regular local ring R. In this paper we study its structure by means of the semigroup of values, SV, and the multi-index graded algebra defined by V, grVR. We prove that SV is finitely generated and we compute its minimal set of generators following the study of reduced curve singularities. Moreover, we prove a unique decomposition theorem for the elements of the semigroup. The comparison between valuations in V, the approximation of a reduced plane curve singularity C by families of sets V(k) of divisorial valuations, and the relationship between the value semigroup of C and the semigroups of the sets V(k), allow us to obtain the (finite) minimal generating sequences for C as well as for V.

    We also analyze the structure of the homogeneous components of grVR. The study of their dimensions allows us to relate the Poincaré series for V and for a general curve C of V. Since the last series coincides with the Alexander polynomial of the singularity, we can deduce a formula of A'Campo type for the Poincaré series of V. Moreover, the Poincaré series of C could be seen as the limit of the series of V(k), k0


Fundación Dialnet

Mi Documat