Antonio Jiménez Vargas , Moisés Villegas-Vallecillos
For compact metric spaces (X,dX) and (Y,dY) and scalars a, ß in (0,1), we prove that every order isomorphism T between little Lipschitz algebras lip(X,(dX)a) and lip(Y,(dY)ß) is a weighted composition operator of the form Tf(y) = a(y)f(h(y)) for all f in lip(X,(dX)a) and all y in Y, where a is a nonvanishing positive function in lip(Y,(dY)ß) and h is a Lipschitz homeomorphism from (Y,(dY)ß) onto (X,(dX)a)
© 2008-2024 Fundación Dialnet · Todos los derechos reservados