Ir al contenido

Documat


Représentations lisses p-tempérées des groupes p-adiques

  • Autores: Jean-François Dat
  • Localización: American journal of mathematics, ISSN 0002-9327, Vol. 131, Nº 1, 2009, págs. 227-256
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider certain asymptotic properties of smooth $p$-adically valued functions and representations of a $p$-adic reductive group $G$. First, we continue the study of the so-called $p$-tempered and $p$-discrete representations, as defined in a former paper, and apply this to get a classification of "locally integral" representations, i.e., those representations such that for any open compact subgroup $H$, the $H$-invariant subspace admits Hecke-invariant lattices. Then we show that the space of square-integrable smooth functions, as defined in the text, is an algebra under convolution to which the action of the Hecke algebra on any $p$-tempered representation extends naturally. We formulate a Plancherel-like formula but prove it only for $SL(2)$


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno