Ir al contenido

Documat


Simple Lie algebras having extremal elements

  • Autores: Arjeh M. Cohen, Gábor Ivanyos, Dan Roozemond
  • Localización: Indagationes mathematicae, ISSN 0019-3577, Vol. 19, Nº 2, 2008, págs. 177-188
  • Idioma: inglés
  • DOI: 10.1016/s0019-3577(09)00003-2
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let L be a simple finite-dimensional Lie algebra of characteristic distinct from 2 and from 3. Suppose that L contains an extremal element that is not a sandwich, that is, an element x such that [x, [x, L]] is equal to the linear span of x in L. In this paper we prove that, with a single exception, L is generated by extremal elements. The result is known, at least for most characteristics, but the proofs in the literature are involved. The current proof closes a gap in a geometric proof that every simple Lie algebra containing no sandwiches (that is, ad-nilpotent elements of order 2) is in fact of classical type.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno