We consider a general class of parabolic spde's $$ \frac{\partial u^\varepsilon_{t,x}}{\partial t}=\frac{\partial^2 u^\varepsilon_{t,x}} {\partial x^2}+\frac{\partial}{\partial x} g(u^\varepsilon_{t,x})+f(u^\varepsilon_{t,x})+\varepsilon\sigma(u^\varepsilon_{t,x}) \dot W_{t,x}, $$ with $(t,x)\in [0,T]\times [0,1]$ and $\varepsilon \dot W_{t,x}$, $\varepsilon >0$, a perturbed Gaussian space-time white noise. For $(t,x)\in (0,T]\times(0,1)$ we prove the called Davies and Varadhan-Léandre estimates of the density $p^\varepsilon_{t,x}$ of the solution $u^\varepsilon_{t,x}$.
--------------------------------------------------------------------------------
© 2008-2024 Fundación Dialnet · Todos los derechos reservados