Ir al contenido

Documat


A product formula for valuations on manifolds with applications to the integral geometry of the quaternionic line

  • Autores: Andreas Bernig Árbol académico
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 84, Nº 1, 2009, págs. 1-19
  • Idioma: inglés
  • DOI: 10.4171/cmh/150
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The Alesker�Poincaré pairing for smooth valuations on manifolds is expressed in terms of the Rumin differential operator acting on the cosphere-bundle. It is shown that the derivation operator, the signature operator and the Laplace operator acting on smooth valuations are formally self-adjoint with respect to this pairing. As an application, the product structure of the space of SU(2)- and translation invariant valuations on the quaternionic line is described. The principal kinematic formula on the quaternionic line H is stated and proved.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno