Ir al contenido

Documat


On ramifications divisors of functions in a punctured compact Riemann surface

    1. [1] Departamento de Matemáticas Universidad de Salamanca
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 33, Nº 1, 1989, págs. 163-171
  • Idioma: inglés
  • DOI: 10.5565/publmat_33189_14
  • Títulos paralelos:
    • Sobre la ramificación de divisores de funciones en una superficie de Riemann compacta con agujeros
  • Enlaces
  • Resumen
    • Let v be a compact Riemann surface and v' be the complement in v of a nonvoid finite subset. Let M(v') be the field of meromorphic functions in v'. In this paper we study the ramification divisors of the functions in M(v') which have exponential singularities of finite degree at the points of v-v', and one proves, for instance, that if a function in M(v') belongs to the subfield generated by the functions of this type, and has a finite ramification divisor, it also has a finite divisor. It is also proved that for a given finite divisor d in v', the ramification divisors (with a fixed degree) of the functions of the said type whose divisor id d, define a proper analytic subset of a certain symmetric power of v'.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno