Ir al contenido

Documat


Multi-stage genetic fuzzy systems based on the iterative rule learning approach

  • Autores: Antonio González Muñoz Árbol académico, Francisco Herrera Triguero Árbol académico
  • Localización: Mathware & soft computing: The Magazine of the European Society for Fuzzy Logic and Technology, ISSN-e 1134-5632, Vol. 4, Nº. 3, 1997, págs. 233-249
  • Idioma: inglés
  • Títulos paralelos:
    • Sistemas genéticos difusos de etapas múltiples basados en el método de aprendizaje iterativo de reglas
  • Enlaces
  • Resumen
    • Genetic algorithms (GAs) represent a class of adaptive search techniques inspired by natural evolution mechanisms. The search properties of GAs make them suitable to be used in machine learning processes and for developing fuzzy systems, the so-called genetic fuzzy systems (GFSs). In this contribution, we discuss genetics-based machine learning processes presenting the iterative rule learning approach, and a special kind of GFS, a multi-stage GFS based on the iterative rule learning approach, by learning from examples.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno