Ir al contenido

Documat


An almost second order uniformly convergent method for parabolic singularly perturbed reaction-diffusion systems

  • Autores: Carmelo Clavero Gracia Árbol académico, José Luis Gracia Lozano Árbol académico, Francisco Javier Lisbona Cortés Árbol académico
  • Localización: Pre-publicaciones del Seminario Matemático " García de Galdeano ", Nº. 20, 2008, págs. 1-22
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work we consider a parabolic system of two linear singularly perturbed equations of reaction-diffusion type coupled in the reaction terms. The small values of the diffusion parameters, in general, cause that the solution has boundary layers at the ends of the spatial domain.

      To obtain an efficient approximation of the solution we propose a numerical method combining the Crank-Nicolson method joint to the central finite difference scheme defined on a piecewise uniform Shishkin mesh. The resulting method is uniformly convergent of second order in time and almost second order in space, if the discretization parameters satisfy a non restrictive relation. We display some numerical experiments showing the order of uniform convergence theoretically proved. These numerical results also indicate that the relation between the discretization parameters is not necessary in practice.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno