Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type $\Delta u-N(x,u)=F(x)$, equipped with Dirichlet and Neumann boundary conditions
© 2008-2024 Fundación Dialnet · Todos los derechos reservados