Ir al contenido

Documat


A structure theorem for 2-hypergroupoids with topological applications

  • Autores: María Pilar Carrasco Carrasco Árbol académico, Antonio Martínez Cegarra Árbol académico, J. Olmos
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 36, Fasc. 1, 1985, págs. 3-11
  • Idioma: inglés
  • Títulos paralelos:
    • Un teorema de estructura para 2-hipergrupoides con aplicaciones topológicas
  • Enlaces
  • Resumen
    • BRANDT [1] gave a structure theorem for connecte groupoids $G$, which in a simplicial version stablishes that $K(\Pi_1\quad (G,^\ast), \thinspace 1)$ is a strong deformation retract of $G$. The main object of this paper is to generalice Brandt's theorem to dimension tow: "If $G$ is a Kan 1-connected 2-hypergroupoid, $K(\Pi_2(G,^\ast), 2)$ is a strong deformation retract of $G$". Then, for a 1-connected topological space $X$ and $^\ast\epsilon X$ the homotopy 2-hypergroupoid of $X$ is equivalent to the second homotopy group $\Pi_2(X,^\ast)$ and the Hurewicz theorem is obtained as an elemental application.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno